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Abstract. Two key concepts of quantum theory, complementarity and entanglement, are considered with respect to their
significance in and beyond physics. An axiomatically formalized, weak version of quantum theory, more general than the
ordinary quantum theory of physical systems, is described. Its mathematical structure generalizes the algebraic approach to
ordinary quantum theory. The crucial formal feature leading to complementarity and entanglement is the non-commutativity
of observables.
The ordinary Hilbert space quantum mechanics can be recovered by stepwise adding the necessary features. This provides
a hierarchy of formal frameworks of decreasing generality and increasing specificity. Two concrete applications, more
specific than weak quantum theory and more general than ordinary quantum theory, are discussed: (i) complementarity
and entanglement in classical dynamical systems, and (ii) complementarity and entanglement in the bistable perception of
ambiguous stimuli.

INTRODUCTION

Key Concepts of Quantum Theory:
Complementarity and Entanglement

Quantum theory has revolutionized our understanding of the physical world in both scientific and epistemological
respects. It was developed in the third decade of the 20th century as a theory describing the behavior of atomic systems.
Subsequently, its range of validity turned out to be much wider. Not only are nuclei and elementary particles, more
than seven orders of magnitude smaller than atomic systems, governed by quantum theory, but also macroscopic
phenomena like superconductivity or superfluidity are successfully described and understood.

The conceptual structure and axiomatic foundations of quantum theory have revealed that it is a logical consequence
of some rather simple and plausible basic assumptions, most importantly the non-commutativity of observables. In
this framework, classical physics represents the special case in which all observables commute with each other. The
axiomatic foundations of quantum theory have shown how deeply rooted some of its apparently bizarre concepts really
are. Two basic notions of quantum theory which are, in this sense, most different from our classical understanding of
nature, are those of complementarity and entanglement. They were both introduced fairly early in the development of
the theory, and much, if not most, of the conceptual insight received from quantum theory is due to their significance.

Complementarity in quantum physcis was proposed by Bohr in 1927 [15] to highlight crucial features of quantum
theory (for more details see [27, 33, 34]). Bohr used the concept of complementarity to indicate a relationship
between apparently opposing, contradictory notions which in fact should be considered in terms of a relationship of
polarity. Complementary features typically exclude each other, but at the same time complement each other mutually
to give a complete view of the phenomenon under study. A well-known physical example is the complementarity
of non-commuting observables, such as position and momentum, implying both ontic indeterminacies and epistemic
uncertainties. From another viewpoint, complementarity arises whenever a system requires a non-Boolean description,
which is at variance with a classical Boolean picture.

Entanglement is formally related to complementarity and characterizes the fact that a system in a pure state in
general cannot be simply decomposed into subsystems with pure states. In a certain sense, such subsystems do not



exist a priori but must be generated by appropriate procedures. This has consequences first pointed out by Einstein et
al. [19]; the term entanglement (German: Verschränkung) itself was coined by Schrödinger in 1935 [43]. Theoretical
progress due to Bell [13] and experimental results due to Aspect et al. [1] confirmed, beyond any reasonable doubt,
the entangled (holistic) character of quantum systems, exhibiting so-called nonlocal (holistic) correlations between
subsystems. Popular misconceptions notwithstanding, it is illegitimate to interpret these correlations due to causal
interactions between the subsystems.

Why Generalize Ordinary Quantum Theory?

Since the early days of quantum theory, Bohr (and others) entertained the idea that the notions of complementarity
and entanglement might be meaningful and important even beyond the realm of the physical systems. For Bohr him-
self this was clearly motivated by his extraphysical interests, which in fact raised his awareness for complementarity
before he transferred it into physics [23]. Among many other examples, he was familiar with the bistable perception of
ambiguous stimuli through his psychologist friend Rubin [35]. Together with Bohr’s studies of the philosophical writ-
ings of Kierkegaard, Høffding and James, this played an important role in the complicated genesis of complementarity
in quantum physics.

Although the best formalized examples of complementary pairs of notions refer to pairs of non-commuting observ-
ables of a system, Bohr insisted that the significance of complementarity goes beyond this. He often emphasized the
fundamental idea of complementarity due to a holistic entanglement of knowledge and action. In this respect, Bohr’s
complementarity refers to a key element of the pragmatist tradition, the reflective relation between the immediate
experience of an object and the awareness of its objectification [28].

It is clear that covering a wide range of phenomena that ultimately even includes topics of psychology and
philosophy, or of artistic and religious experience, by formal frameworks such as those of physics and mathematics
is highly problematic. If one wants to maintain the rigor of a formal approach one must, therefore, restrict oneself
to situations that are formally tractable in a minimal sense, which may be (much) weaker than in physics. This basic
idea was first carried out in [10] and led to a well-defined, axiomatic mathematical structure preserving those elements
necessary for the notions of complementarity and entanglement independent of their physical embedding and related
applications.

The main ingredients of this structure, called weak quantum theory, will be reviewed in the first part of this
contribution. Subsequently, two examples will be presented which were to some extent addressed before [10, 8]: (i)
specific features of information processing dynamical systems, where weak quantum theory is applied within physics,
but beyond ordinary quantum physics, and (ii) the bistable perception of ambiguous stimuli, where weak quantum
theory is applied within cognitive science, that is outside physics.

AXIOMATIC FRAMEWORK

The Mathematical Structure of Weak Quantum Theory

A first requirement for the scientific description of any system Σ , physical or otherwise, is its separation from the
rest of the universe of discourse. A system Σ is considered as a part of reality in a very general sense, i.e. it can be the
object of attention and investigation beyond the realm of quantum physics, possibly even beyond the limitations set by
the notion of a material reality. Even though the isolation of parts of reality is often problematic, its possibility, at least
in some approximate sense, is a prerequisite for any act of observation. Moreover, it is implicit in the epistemic split
between subjects and objects of cognition.

In a second step, a set A of observables and a set Z of states is assigned to every system Σ . An observable is a
property of the system Σ which can be investigated in a given context. Non-trivial observables must exist, whenever Σ
has enough internal structure to be a possible object of a meaningful study. To every observable A there should belong
a set specA of possible results of an investigation of A.

It must at least be conceivable that the system Σ exists in different states. They should be reflected in different
outcomes of observations associated with observables A. The possibility of different states is indispensible for
discussing stability criteria for Σ , which has to maintain its identity under “unsubstantial” changes. In addition to
such an ontic understanding, the notion of a state also has epistemic aspects, reflecting various degrees of knowledge



about the ontic state of Σ [9]. As in ordinary quantum theory, we call a state pure if it encodes maximal information
about Σ .

In the following we characterize the general structure of A and Z. The first property of A that we formulate is:

Axiom I. To every observable A 2A belongs a set specA, the set of possible outcomes of a “measurement” of A.

Quantum observables can be identified with functions A : Z ! Z on the set of states. This fact, which underlines the
active, operational character of observations, can be formulated as:

Axiom II. Observables are (identifyable with) mappings A : Z ! Z, which associate to every state z another state A(z).

Axiom II implies that observables can be composed as maps on Z, where the map AB is defined by first applying B
and then A. We shall assume:

Axiom III. With A and B, AB is an observable as well.

A direct consequence of Axiom III is the associativity of the composition of observables:

A(BC) = (AB)C (1)

Moreover, we can postulate:

Axiom IV. There is a unit observable 1l such that 1lA = A1l = A 8 A 2A .

1l is the operation on Z that does not change any state. It corresponds to a proposition which is always true, so
spec1l = ftrueg. Axioms I–IV imply that the set of observables has the structure of a monoid, also called a semigroup
with unity or an associative magma with unity.

For formal completeness we also need an “impossible” zero state z= o and a zero observable 0 with spec0= ffalseg,
corresponding to an always false proposition:

Axiom V. There are a zero state o and a zero observable 0 such that

0(z) = o 8 z 2 Z;

A(o) = o 8 A 2A ; (2)

A0 = 0A = 0 8 A 2A :

In the generalized framework of weak quantum theory there is no evident place for the addition of observables. As
a consequence, the set of states cannot be presupposed to be convex as in ordinary quantum theory. This relates to the
fact that a probability interpretation is not feasible (but can be implemented, see below).

There is no reason to assume commutativity, AB = BA, for all A, B 2 A . Rather there will be both commutative
(compatible) and non-commutative (incompatible) pairs of observables, depending on whether AB = BA or AB 6=
BA. This implies that the monoid structure of A , however general, contains the notions of complementarity and
entanglement as essential features of quantum theory.

In addition to the structure defined by axioms I–V, we introduce propositions P in the set of observables A , which
play a distinguished role. A proposition P 6= 0;1l is an observable whose outcome is either true or false:

specP = ftrue; falseg for P 6= 0;1l (3)

Moreover, to every proposition P there must be a negation P, providing “false” if and only if P provides “true”. We
give a few rather evident axioms assumed to hold for propositions:

Axiom VIa.

P2 = P;

P = P; 1l = 0; (4)

PP = PP = 0:

For compatible propositions P1;P2;P1P2 = P2P1 we can define a conjunction

P1^P2 = P2^P1 = P1P2 (5)

and an adjunction
P1_P2 = P1P2 = P2_P1 (6)



with the usual properties.
The meaning of P as verification is postulated by:

Axiom VIb. If P(z) 6= o, then P(z) is a state in which P is true with certainty.

Finally, we formulate an axiom replacing the spectral theorem of ordinary quantum theory. Every observable A
should be equivalent to a set of mutually exclusive propositions. More precisely, let A be an observable and let
α 2 specA. Aα denote the proposition that the outcome of a measurement of A is α 2 specA. Then we have:

Axiom VIc.
Aα Aβ = Aβ Aα = 0 for α 6= β ; AAα = Aα A;

_

α2specA

Aα = 1l: (7)

A and B are compatible if and only if Aα and Bβ are compatible for all α 2 specA and β 2 specB. In general,
incompatible observables do not have simultaneously definite values, and the associated states are not dispersion-free.

Comparison with Ordinary Quantum Theory

Although weak quantum theory as defined by axioms I–VI is considerably more general than ordinary quantum
theory, they share the following two characteristic features.

• Incompatibility and complementarity arise due to the non-commutativity of the multiplication of observables,
implying that the associated states are generally not dispersion-free.

• Holistic correlations and entanglement arise due to the incompatibility of observables. In particular, entanglement
arises if for a composite system observables pertaining to the system as a whole are incompatible with observables
of its subsystems.

In the latter context, it should be emphasized that weak quantum theory refers to the description of the system as a
whole. Any identification of parts or subsystems implies a specific choice of representation in terms of partial monoids.
This choice remains open in the general framework, where the absence of a vector space structure (in particular of a
Hilbert space structure) implies that there is no tensor product construction for the set of observables of a composite
system. In general, we can only expect:

A �A1�A2; Z � Z1�Z2; (8)

A1(Z1)� Z1; A2(Z2)� Z2: (9)

A similar remark applies to the specific form of the dynamical evolution of (sub-)systems in weak quantum theory.
The dynamics of a system is generally described by a one-parameter (semi-)group of endomorphisms. The process
generating subsystems (e.g., by measurement) and the dynamics of interacting subsystems depends on details of the
considered system and its decomposition. In particular, the Schrödinger equation of ordinary quantum theory is not
included in weak quantum theory.

In addition, a number of other important characteristics of ordinary quantum theory are not shared by weak quantum
theory.

• There is no quantity like Planck’s action h which in ordinary quantum theory quantifies the degree of non-
commutativity of two given observables. This indicates that, in the generalized theory, complementarity and
entanglement are not restricted to a particular degree of non-commutativity.

• Weak quantum theory does not include a Hilbert space representation. Therefore, the compatibility or incompat-
ibility of observables cannot be characterized in terms of shared eigenfunctions. As a consequence, complemen-
tarity cannot be distinguished as maximal incompatibility in the sense that observables have no eigenfunction at
all in common. However, this can be replaced by requiring that maximally incompatible observables generate the
complete set of observables of weak quantum theory.

• Since the addition of observables is not defined in weak quantum theory, we do neither have a von Neumann
algebra of observables nor Heisenberg uncertainty relations. There is no convex set of states, there are no linear
expectation value functionals, and there is no probability interpretation (no Born rule). Probability distributions
on the sets specA do not occur and are not calculable in weak quantum theory. As a matter of fact, the concept
of probability will be absent whenever a quantitative valuation of observables of a system is inappropriate or
impossible.



• There is no way to generalize Bell’s inequalities up to the general framework of weak quantum theory, and there
is no way to argue that complementarity and indeterminacy in weak quantum theory are of ontic rather than
epistemic nature. On the contrary, one would expect them to be of epistemic origin in many cases, for instance,
due to incomplete knowledge of the system or uncontrollable perturbations by observation. An ontic interpretation
is clearly appropriate if the state of the system is dispersion-free. If a state is dispersive, an ontic interpretation
is still appropriate for pure (individual) states. Otherwise, if dispersive states are mixed (statistical), the proper
interpretation is epistemic.

Axioms I–VI can be regarded as minimal requirements for a meaningful general theory of observables and states of
systems showing complementarity and entanglement. Between the weak version of quantum theory and its ordinary
version, there are intermediate theories which can be obtained by enriching the system of axioms stepwise. Let us first
discuss enrichments of the propositional axiom VI.

One evident option is to postulate that the conjunction and adjunction of propositions is also defined in the less
intuitive case of incompatible P1 and P2 such that propositions P1^P2 and P1_P2 =P1^P2 always fulfil the conditions
of axiom VIa. In addition, it is natural to postulate

P1^ (P1_P2) = (P1_P2)^P1 = P1;

P1_ (P1^P2) = (P1^P2)_P1 = P1^P2: (10)

The stronger distributivity condition

P1^ (P2_P3) = (P1^P2)_ (P1^P3);

P1_ (P2^P3) = (P1_P2)^ (P1_P3); (11)

is not even satisfied in ordinary quantum theory. If every propositional subsystem generated by two compatible
propositions with P1 ^ P2 = P1 and their negations are Boolean, then (modulo some technical complications) the
propositional system is already isomorphic to a system of orthogonal projectors in a Hilbert space [38, 47]. This
Boolean property does not follow from axioms I – VI.

For a probability interpretation of states, one does not loose much by assuming specA 2 C , because it is plausible
that the set of outcomes of A can be mapped onto the complex numbers in a one-to-one way. Assuming this, introducing
a probability interpretation amounts to postulating for every z 6= 0 the existence of an expectation value functional

Ez : A ! C ;

A 7! Ez(A) 2 C ; (12)

with
Ez(1l) = 1: (13)

The existence of an expectation value functional has far reaching consequences

• Addition of observables and multiplication of observables with complex numbers can now be defined by postu-
lating

Ez(αA+β B) = αEz(A)+β Ez(B) (14)

for all Ez.
• As the mean value of a probability distribution, Ez(A) has to obey reality and positivity conditions. The only

evident way to achieve this is the introduction of a star-involution A ! A � (A�A has to be self-adjoint also if A
and A� do not commute) implying a C�-algebra of observables.

• The set of all expectation value functionals will be convex such that pure states can be defined as in ordinary
quantum theory.

For the discussion of concrete applications, it has to expected that the full generality of weak quantum theory has to
be restricted in order to formulate a proper level between weak and ordinary QT



SELECTED APPLICATIONS

The examples that we are going to discuss in the following refer to (i) the temporal evolution of (nonlinear) dynamical
systems, briefly addressed under the notion of information dynamics, and (ii) to a model for the bistable perception of
ambiguous stimuli inspired by the quantum Zeno effect. Their proper treatment requires specific details not included
in the minimal framework of weak quantum theory as specified in the axioms discussed above. Most importantly, the
addition of observables is defined and a probability interpretation is adopted in both examples.

Their difference from ordinary quantum theory is best characterized by their particular way to implement non-
commuting observables. While in ordinary quantum theory Planck’s action represents a universal commutator of
canonically conjugate observables, complementarity in dynamical systems is expressed by a system-specific commu-
tator, the dynamical entropy, of different types of generators of the dynamics. Our cognitive example is more general
in the sense that no particular commutator needs to be specified at all.

Information Dynamics

Complementarity of Liouville Dynamics and Information Dynamics

Generalizing earlier work by Misra and colleagues [29, 30], an information theoretical description of chaotic
systems (including K-systems) was found to provide a commutation relation between the Liouville operator L for
such systems and a suitably defined information operator M [11]. The definition of L is, as usually, given by

L ρ = i
∂
∂ t

ρ (15)

where L acts on distributions ρ representing the states of a system in a probability space (not in a Hilbert space). The
dynamics of the system is thus characterized in terms of an automorphism A.

The continuous spectrum of M derives from the time-dependent information I(t) which can be gained by measuring
particular properties of a system at time t in comparison with its predicted properties:

M ρ = I(t) ρ = (I(0)+Kt) ρ : (16)

K is the Kolmogorov-Sinai entropy, a statistical dynamical invariant of the system. It is experimentally available by
Grassberger-Procaccia type algorithms [22]. K > 0 only for chaotic systems with intrinsically unstable dynamics. In
an information theoretical interpretation [44], K characterizes the rate at which the system generates information along
its unstable manifolds. Kt is the information generated by the system after a time interval [0; t]. This means that the
accuracy of a prediction decreases with increasing prediction time.

In simple cases, the commutator of L and M is straightforwardly given by the rate of information generation, namely
the Kolmogorov-Sinai entropy (cf. subsequent subsection and [3] for more details):

i[L;M] = K1l : (17)

The two operators L and M commute if the considered system does not generate information, i.e., if it is intrinsically
stable and K = 0. If K > 0, the dynamical descriptions due to L and M are different with respect to the prediction of
a future state of the system. This is a consequence of the increasing uncertainty of a predicted state of the system as
time proceeds. Whenever K > 0, the state ρ(t) of a system cannot be predicted as accurate as initial conditions have
been measured or otherwise fixed at t = 0.

The commutation relation of L and M resembles corresponding commutation relations in ordinary quantum theory,
but there are differences. First of all, since K is explicitly system- and parameter-dependent (i.e. highly contextual), the
“degree” of non-commutativity of L and M is not universally determined. This situation is at variance with conventional
quantum mechanics with h as a universal commutator. Moreover, K is a statistical quantity specifying the average flow
of information in chaotic systems, while h is a non-statistical constant of nature.

As a consequence of (17), L and M provide complementary modes of description. There are two basic features of
this complementarity. (i) While L refers to a global description of the system as a whole, M refers to a description with
respect to its unstable manifold(s) only. (ii) While a description in terms of L is time-reversal symmetric (reversible),
this symmetry is broken by a description in terms of M, thus implying irreversibility.



Complementary Partitions and Non-Hyperbolic Manifolds

The definition of M depends decisively on the choice of a state space partition. Since the Kolmogorov-Sinai entropy
K is defined as the supremum of the dynamical entropy H(P;A) with respect to all possible partitions P,

K = sup
P

H(P;A); where H(P;T ) = lim
n!∞

1
n

H(P_AP_ :::_An�1P); (18)

the proper choice for M is the partition which maximizes the dynamical entropy. This partition is called a generating
partition. It is defined such that boundaries between its cells are mapped onto each other under the dynamics of the
system. This entails that the cells are constructed such that correlations between points within cells are maximized
and correlations between points in different cells are minimized. Put differently, epistemic states defined by the cells
of a generating partition are stable under the dynamics. Well-known examples of generating partitions are Markov
partitions.

As has been shown recently [12], different partitions (and associated descriptions) are complementary, or incom-
patible, with respect to each other if they are not generating. This formal result demonstrates how complementary
epistemic state space descriptions can arise although the underlying ontic description is purely classical, i.e. rigor-
ously commutative.

Due to a theorem by Bowen [16], all hyperbolic systems have generating partitions; there are even possibilities to
construct them explicitly (e.g., by shadowing [21] or by template analysis [39]). Nevertheless, generating partitions
are known only for a few specific systems such as the logistic map or the Henon map. The basic fact distinguishing
hyperbolic systems is that they can be represented in terms of a direct sum E =E s�Eu of stable and unstable manifolds
with respect to a fixed point x:

Es(x) = fy 2 R
m : f n(y)! x for n! ∞g (19)

Eu(x) = fy 2 R
m : f�n(y)! x for n! ∞g: (20)

In hyperbolic systems, trajectories belonging to E s and Eu can only intersect transversely. If a system is not hyperbolic
(e.g. in case of homoclinic or heteroclinic tangencies), stable and unstable manifolds are not strictly separable but
entangled, and a direct sum decomposition is not possible.

It is highly nontrivial to find or approximate generating partitions for non-hyperbolic systems (see [48]). Since most
systems pf physical or biological interest are (or must be assumed to be) non-hyperbolic, this is a serious obstacle to
a suitable definition of robust epistemic states for such systems. There is considerable current interest in these and
related problems, and there is much to be explored. It may be conjectured that the complementarity of partitions is
basically related to another, more fundamental, complementarity of stable and unstable manifolds in non-hyperbolic
systems.

Practical applications of this theoretical topic can be found in the discussion of emergent levels of descriptions as
outlined in [6]. For instance, cognitive states are most often defined in terms of equivalence classes of (fine-grained)
neuronal states [20], thus utilizing the strategy of partitioning the underlying (neuronal) state space. The partitioning
is usually chosen by empirical plausibility; the robustness of the resulting cells and, therefore, of cognitive states
associated with them is usually not addressed. If it is true that biological systems are generically non-hyperbolic,
so that generating partitions are difficult to obtain (or even unobtainable), this could explain the observation that
psychological descriptions are generically complementary, i.e. incompatible, with each other.

Non-Boolean Logic of Dynamical Systems

A general interpretation of the commutation relation between L and M in terms of propositions is possible in terms
of a lattice theoretical analysis. Analogous to the work of Birkhoff and von Neumann [14], which pioneered the
non-Boolean logic of quantum theory, such an analysis provides basic logical features of information processing
systems. Following an idea by Krueger [26], it was shown that the temporal evolution of information processing
systems is governed by a non-Boolean logic [4]. More precisely, the propositional lattice characterizing such a logic is
complemented but not distributive. This non-distributivity shows a subtle but important difference as compared with
the non-distributivity due to ordinary quantum theory.

A fundamental feature of lattices as mathematical structures is the duality of their properties. Formally this means
that each true proposition is transformed into another true propositon by exchanging the dual operations defined in



lattice theory. It turns out that the difference between the ordinary quantum theoretical non-distributivity and the non-
distributivity due to information processing systems precisely accounts for this duality. While ordinary quantum theory
provides non-distributivity relations of the form

a > (a^b)_ (a^b0)

^ b > (b^a)_ (b^a0) (21)

(a0 ist the complement of proposition a, b 0 is the complement of proposition b), information processing systems satisfy
non-distributivity relations of the form:

a < (a_b)^ (a_b0)

_ b < (b_a)^ (b_a0) : (22)

In contrast to (21), its dual version (22) requires only one of the two inequalities to be satisfied. A detailed analysis [4]
shows that this is indeed crucial for the non-distributivity of information processing systems. It is therefore possible
to consider the logics of ordinary quantum systems and of information processing systems as dual aspects of one
underlying non-distributive lattice.

Temporal Order Threshold in Perception

There is an interesting relation between (17) and another commutation relation between L and a time operator T
introduced by Misra and colleagues [29, 30]:

i[L;T ] = 1l : (23)

T is well-defined if K > 0. Since L, in addition to its role as an evolution operator as in (15), can also be interpreted as
an energy difference due to Lρ = [H;ρ ] for a Hamiltonian H, (23) indicates a complementarity between energy and
time for chaotic systems. This suggests the idea of a temporal entanglement for such systems. This entanglement can
be interpreted as a temporal nonlocality [31] due to a coarse grained phase space; for a more detailed discussion see
[3]. It should be emphasized that this nonlocality is epistemic and must not be confused with the ontic nonlocality of
ordinary quantum theory.

In a recent paper [7] it has been suggested to apply this type of entanglement to experimental observations
concerning the perception of the temporal sequence of successively presented stimuli. A number of corresponding
studies (for reviews see [41, 40]) reveal the existence of a temporal window with a duration of approximately 20-40
msec in which individual stimuli can be discriminated but their sequence cannot be assigned properly. The size of this
window, the so-called order threshold, is modality-independent and has been suggested to represent the duration of an
extended “now” or “presence” [41]. It may be regarded as a cognitive example of temporal nonlocality or temporal
holism.

Since there is a lot of evidence that many brain processes are chaotic [46], their Kolmogorov-Sinai entropy K is
positive, and it is tempting to interpret the inverse of K in terms of the duration of the order threshold. In this spirit,
a “temporal double slit” scenario has been proposed [7] on the basis of the complementarity of L and T as in (23),
where L corresponds to an energy difference or, equivalently, frequency difference ∆ν . If one considers the numerical
coincidence of ∆t � 30 msec for the order threshold and the ∆ν � 40 Hz for the (γ-band) neuronal oscillations in terms
of a generalized time-energy uncertainty relation, this leads to an interesting empirical prediction. According to such
an uncertainty relation, the distribution of experimentally determined values of ∆t should change in a well-defined
manner if the distribution of ∆ν γ-band frequencies is varied.

Further experimental work will be required to check this prediction. Another application of weak quantum theory
to cognitive processes, which has already received empirical confirmation, will be described in the following section.

Necker-Zeno Model

Bistable Perception of Ambiguous Stimuli

Bistable perception arises whenever a stimulus can be interpreted in two different ways with approximately equal
plausibility. A very simple and often investigated example of bistable perception is the so-called Necker cube. A grid of



a cube in two-dimensional representation can be perceived as a three-dimensional object in two different perspectives,
either as a cube seen from above or from below. The perception of the Necker cube switches back and forth between
these two possible representations spontaneously and inevitably.

Recently [8] it was proposed to describe bistable perception with the formalism of a two-state system, where the two
basis states correspond to the two different ways to represent the stimulus. Measurement is considered as the mental
process determining in which way the figure is perceived. The switching between the different perceptions corresponds
to transitions between the two states, which are eigenstates of the operator representing a particular perception and
unstable under the time evolution of the system.

Such a description of bistable perception employs a non-minimal version of weak quantum theory with a linear
structure and a two-dimensional linear state space. This version is relatively close to the structure of the full quantum
theory used in physics. This does not imply, however, to understand bistable perception as a quantum phenomenon in
the sense that the related brain processes are ordinary quantum processes (for an overview of corresponding approaches
see [5]). Rather, we will discuss the quantum-like behavior of bistable perception as a result of the truncation of
an extremely complicated system to a two-state system, into which the effect of many uncontrolled variables and
influences is lumped in a global way.

For this purpose, we consider a system with a linear state space spanned by two states ψ 1 and ψ2, neither of which
is an eigenstate of the Hamiltonian H generating the evolution matrix U(t) = e iHt . If the system is initially in state ψ1
and allowed to evolve freely according to U(t), then its state will oscillate between ψ 1 and ψ2. This oscillation can be
slowed down by increasing the frequency at which the system is measured, asking whether it still resides in its initial
state. In the limit of continuous measurement, the evolution of the system can be completely suppressed. In ordinary
quantum mechanics, this phenomenon is known as the quantum Zeno effect. Its possible cognitive significance was
indicated previously by Ruhnau [42] as well as by Stapp [45]. Concrete and quantitative predictions for cognitive
systems were for the first time proposed in [8].

Complementarity of Observation and Dynamics

The quantum Zeno effect was originally introduced as the quantum Zeno “paradox” by Misra and Sudarshan [32]
for the decay of unstable quantum systems. Its key meaning is that repeated observations of such systems decelerate
the time evolution which they would undergo without observations, e.g. their decay. The metaphor “a watched pot
never boils” paraphrases this behavior in the limit of continuous observation.

The situation addressed in the following refers to a quantum system oscillating between two non-stationary states.
For this purpose, consider a two-state system with the following properties (the results apply to more general systems
as well):

• An observation is represented by the operator

σ3 =

�
1 0
0 �1

�
: (24)

Immediately after an observation, the system will be in one of the corresponding eigenstates

ψ1 = j+i=
�

1
0

�
or ψ2 = j�i=

�
0
1

�
: (25)

• Both σ3-eigenstates may also be represented by their projection operators

P
+
=

�
1 0
0 0

�
and P

�
=

�
0 0
0 1

�
: (26)

• Without loss of generality, the Hamilton operator giving rise to transitions of the system can be written as

H = gσ1 = g

�
0 1
1 0

�
; (27)

where g is a coupling constant. Hence, the unitary operator of time evolution is represented by

U(t) = eiHt =

�
cosgt i singt
i singt cosgt

�
: (28)



Note that σ1 and σ3 do not commute, thus motivating the framework of weak quantum theory, since observation
and dynamics are complementary.

• In this model, ∆T defines the time interval between two successive observations, and T defines the time scale after
which the state has changed with 50% probability. It is assumed that T=∆T =N � 1. (The cognitive interpretation
of ∆T and T will be discussed in the next subsection.)

The experimentally accessible quantities ∆T and T can be related to the evolution of the system under the hypothet-
ical condition that no observations are performed at all [8]. In this empirically inaccessible case, the time evolution is
solely given by U(t) and the state of the system oscillates between the two eigenstates j+i and j�i with period t 0. As
shown in [8], the Necker-Zeno model predicts that these three time scales are related by

t0 =
π

4
p

ln2

p
T ∆T �

p
T ∆T : (29)

The derivation of this relation depends on two arbitrary choices: T is an expectation value determined from the
condition that the probability of state flipping is 1=2, and t 0 is determined from the condition that the oscillating state
is a superposition of eigenstates of σ3 with equal coefficients. Even if these conditions are varied, the general result
remains unchanged. It entails the following two predictions:

1. As long as the time interval ∆T between two observations is non-zero, the states will spontaneously switch into
each other after an average time T which is large compared to ∆T and t 0.

2. The relation between the time scales T , ∆T and t0 is given by (29).

Cognitive Time Scales

In order to assign significance to the time scales T , ∆T and t0 in terms of the process associated with bistable
perception, corresponding cognitive time scales have to be identified. As discussed in detail in [8], there are natural
choices.

One of the fairly invariant patterns in the perception of ambiguous stimuli is a remarkably stable rate of reversals for
individual subjects, corresponding to a “mean first passage time” between 1 and 15 seconds. The duration after which
the stimulus orientation spontaneously reverses was found to be gamma-distributed around a maximum of about 3
seconds [18] (recent results indicate alternative distributions [17]). This time scale can straightforwardly be attributed
as the extended oscillation period T due to observations. Its ubiquity and basic significance (for more examples see
[8]) suggests that T � 3 sec is also significant for cognitive processes beyond the bistable perception of ambiguous
stimuli.

A reasonable estimate for the time between observations in the sense of the quantum Zeno effect, ∆T , is difficult to
obtain from the phenomenology of bistable perception. It has to satisfy at least one condition: the perceptual system
must be able to assign a temporal sequence to successive events, i.e. observations. In this respect, the order threshold
in the perception of sequential stimuli [41, 40] is significant.

As indicated above, the sequential order of successive stimuli with a temporal interval smaller than approximately
30 msec cannot be properly recognized. This suggests to use the order threshold as a generic lower bound for the time
∆T between successive observations in the Necker-Zeno model. Observations with smaller temporal distance cannot
be temporally ordered. The fact that the order threshold is modality-independent and its fundamental significance for
the binding problem add to the plausibility of this suggestion.

Finally, the meaning of t0 is that of an oscillation period of the transition process under the assumption of no
observation, i.e. the evolution of the system is solely governed by U(t). According to (29), observation leads to an
increase of the effective oscillation time from t0 to T � t2

0=∆T . With T � 3 sec and ∆T ' 30 msec, this provides
t0' 300 msec. Under the influence of observations with a temporal interval of 30 msec, the observation-free oscillation
period of 300 msec due to U(t) is increased to an oscillation period of 3 sec.

Several hundred milliseconds are the order of magnitude which is most often discussed as the time required for a
stimulus to become consciously perceived (cf. the P300 component in event-related potentials). In contrast to T , which
represents the “lifetime” (or mean first passage time) of each of the perceptual representations, t 0 can be regarded as
the relaxation time into each of the representations, which is much shorter than the lifetime in each representation due
to the Necker-Zeno model. Without the Zeno effect, the lifetime T would be identical with the transition time t 0.



Experimental Results

It has been observed that the lifetime T for bistable Necker cube perception changes considerably if the stimulus
is presented in a non-continuous way [36]. Particular combinations of on- and off-time intervals lead to significant
changes of T . Recent results [24] show that T depends essentially on off-times rather than on on-times: T is maximal
for long off-times (on the order of a second).

Long off-times obviously increase the interval after which a reversal of the Necker cube perception becomes
possible at all. From the theoretical point of view outlined above, non-continuous presentation of the Necker cube with
considerable off-times effectively modifies the Hamiltonian of the system, leading to an increased effective oscillation
time t0.

More precisely, this argument applies if off-times are greater than the value of t 0 under continuous presentation
(with vanishing off-time). For non-continuous presentation, off-times that are long enough can therefore be used to
“simulate” t0 in an experimentally well-controlled fashion. For such a situation, Fig. 1 shows experimental results for
T = f (t0) from [24, 36] together with a theoretically obtained curve according to (29) and with ∆T = 70 msec. The
theoretical curve fits the empirical results perfectly well. Using ∆T = 70 msec to estimate t 0 for continuous presentation
provides t0 � 460 msec.
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FIGURE 1. Experimentally obtained lifetimes T for the bistable perception of a non-continuously presented Necker cube.
Crosses mark results from [24]: for each off-time t0, T (including standard errors) is plotted for three on-times of 0.05 sec, 0.1
sec, and 0.4 sec. Squares mark results from [36] for an on-time of 0.3 sec (no errors indicated in [36]). The plotted curve shows T
as a function of off-times t0 according to (29) with ∆T = 70 msec.

For off-times less than 300 msec, T starts to increase again with decreasing off-times. This behavior can be
understood as a consequence of the unperturbed dynamics U(t) in the model, where no Zeno effect plays a role.
Recent empirical results for off-times smaller than 300 msec agree with corresponding theoretical predictions [25]. In
addition, it is possible to derive the distribution of T (e.g., a gamma distribution) by a suitable choice for the transient
initial behavior of U(t) after each observation [25].

Since the T -distribution can strongly vary between different individuals, it would be interesting to study whether
or not this corresponds to a covariation of ∆T . Dramatic increases of T by a factor of about 1000 for Tibetan monchs
as subjects were recently reported by Pettigrew [37]. However, it is obvious that associated changes of ∆T are much
more difficult to measure, and no such data are available so far.

Let us eventually remark that weak quantum theory indicates the possibility of superpositions of the eigenstates
j+i and j�i. One may speculate that such a type of entanglement may be an attractive candidate to model cognitive
states which are in neither of the two categorial representations of the Necker cube. From the perspective of dynamical



systems, such states would be intrinsically unstable and have been denoted as acategorial [2]. Further work will be
necessary to develop this idea in more detail.

SUMMARY

The first part of this paper reviews the formulation of a weak version of quantum theory first proposed in [10]. It is
motivated by the attempt to find a formal framework for the concepts of complementarity and entanglement not only
within ordinary quantum physics, but also in more general contexts. The weak version of quantum theory is based on
a minimal set of axioms forming the mathematical structure of a monoid. The key requirement for complementarity
and entanglement in this framework is the non-commutativity of observables.

Ordinary quantum theory can be recovered from weak quantum theory by additional axioms, restrictions, and
specifications. For example, the minimal version of weak quantum theory does not provide a von Neumann algebra
and it does not include a Hilbert space representation. There is no Schrödinger equation for the dynamics and no Born
rule for a probabilistic interpretation. In general, the non-commutativity of observables is not quantified by Planck’s
constant, the variance of observables is not given by Heisenberg uncertainty relations, and Bell-type inequalities cannot
be formulated. Weak quantum theory is applicable at both ontic and epistemic levels of discussion.

In the second part, two applications are presented to demonstrate the viability of weak quantum theory. They refer
to (i) complementary types of dynamical descriptions of classical dynamical systems, and (ii) the bistable preception
of ambiguous stimuli. These examples are based on different levels of generalization between weak and ordinary
quantum theory, depending on which restrictions are added to the minimal framework. The main formal difference
between them can be expressed by the commutator of the non-commuting operators introduced. In example (i) the
commutator is system-specific rather than universal, in example (ii) no commutator is specified at all. Both examples
depend heavily on probabilistic concepts, and they refer to epistemic rather than ontic interpretations.

Both applications have been developed far enough that they can be related to empirical results. In example (i), the
key quantity in this respect is the empirically accessible Kolmogorov-Sinai entropy of classical dynamical systems. It
specifies the degree of non-commutativity of different dynamical descriptions if the underlying state space partition
is generating. If this is not the case, the partitions themselves are in general complementary. The relation between
complementary descriptions and a non-Boolean logic for dynamical systems is pointed out. Finally, it is indicated how
non-commuting operators in classical dynamical systems can imply a temporal version of entanglement.

In example (ii) a Necker-Zeno model for bistable peception is presented as a generalization of the quantum Zeno
effect. This model is based on the complementarity of an elementary cognitive observation process and the switching
process between the different representations of an ambiguous stimulus. It provides a quantitative relation between
three fundamentally different cognitive time scales of some ten milliseconds, some hundred milliseconds, and some
seconds. Experimental results agree with this prediction. Superpositions of states in different representations are
tentatively suggested as candidates for entangled cognitive states.
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